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 How do QED processes affect the 
absorption of laser light by plasmas?

 When do those processes become 
significant and how do we study 
these plasmas?

 What experiments are possible now 
or in the near future?
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New absorption mechanisms

Radiation from accelerating electrons

 Fractional energy loss to 
radiation in one laser 
period is

 i.e. 10% at the current 
intensity frontier.



New absorption mechanisms

Radiation reaction

 Radiation carries 
momentum as well as 
energy, so the electron 
must recoil.

 The Lorentz force does 
not account for that 
recoil.

 Modify electron equation 
of motion.



New absorption mechanisms

From classical to quantum radiation reaction

 Many different 
formulations of the 
classical radiation reaction 
force1.

 Lorentz-Abraham-Dirac 
and Landau-Lifshitz are 
the most widely accepted.

 Can be derived2 from 
QED, and are consistent 
to first order in α.

1Burton and Noble, Contemp. Phys. 55 2 (2014); 2Ilderton and Torgrimsson, Phys. Lett. B 725 4 (2013)



New absorption mechanisms

From classical to quantum radiation reaction

 When does a classical 
treatment of radiation 
become insufficient?

 Important parameter is χ 
(ratio of electric field in 
electron rest frame to the 
Schwinger field)



New absorption mechanisms

Gamma ray emission

 A electron in a laser field 
has Lorentz factor about 
a0

 So in a typical laser-
plasma interaction



New absorption mechanisms

Gamma ray emission

 The typical photon energy 
as a fraction of the 
electron energy is 0.44χ.

 Electrons can lose a 
substantial fraction of 
their energy in a single 
emission.

 Emission becomes a 
stochastic process.



New absorption mechanisms

Gamma ray emission

 But even for χ = 0.1, 
quantum corrections to 
the photon spectrum 
mean that a classical 
treatment overestimates 
the radiated power by 
30%.

 The classical force must 
be damped by a factor 
g(χ) < 1.
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New absorption mechanisms

Electron-positron pair creation

 If we can emit photons 
with multi-MeV energies, 
what about pair creation? 

 Breit-Wheeler pairs are 
created when gamma rays 
collide with photons of 
the laser pulse.

 Purely quantum 
phenomenon.



New absorption mechanisms

Electron-positron pair creation

 Pair creation probability 
depends on the photon χ 
and the distance over 
which the intense fields 
are sustained.  

 Result is
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Why study QED-plasmas?

Increasing intensity of short-pulse lasers

 Current intensity record is 
2 × 1022 Wcm–2 at the 
HERCULES laser, 
Michigan.

 Next generation laser 
facilities (ELI etc.) will 
exceed 10 PW,
1023 Wcm–2.



How can we study QED-plasmas?

Laser-solid interactions at >10 PW

 Important physics across 
a wide range of 
timescales.

 1012 particles in the initial 
state.

 QED processes in a 
strong background field 
with complex structure.

Image from C.P. Ridgers et al, PRL 108, 165006 (2012)



How can we study QED-plasmas?

Laser-solid interactions at >10 PW

 Make simplifying 
assumptions to study 
these interactions with 
PIC codes.

 Monte-Carlo modelling of 
QED events (Duclous et 
al, PPCF 53, 015009).

 e.g., EPOCH, OSIRIS, 
PICADOR...

Image from C.P. Ridgers et al, PRL 108, 165006 (2012)



Simulating QED-plasmas

QED-PIC codes

 We also assume the fields 
are weak.

 i.e. the fields invariants f 
and g are vanishingly 
small

 If the formation length is 
short enough, we can 
assume the fields are 
quasi-static over the 
emission process.

 The formation length is 
smaller than the laser 
wavelength by a factor of 
the strength parameter a

0
.



Simulating QED-plasmas

QED-PIC codes

 Other constraints on PIC 
simulations:

 Size of timestep must be 
set to avoid multiple 
scatterings (constraint set 
by rate of photon 
emission is strongest). 

 C. P. Ridgers et al, J. 
Comp. Phys., 260, 273 
(2014)

 The rates for photon and 
pair production can then 
be calculated in an 
equivalent system of fields 
with the same 
instantaneous value of χ.

 e.g. a static magnetic 
field in the ultrarelativistic 
limit: T. Erber, Rev. Mod. 
Phys. 38, 626 (1966)
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Simulating QED-plasmas

e.g. laser absorption fraction to gamma-rays
2D QED-PIC simulations of 40fs of 1 micron light striking a plasma with density just
above critical:



Simulating QED-plasmas

e.g. laser absorption fraction to gamma-rays

When a0 is high enough that a substantial fraction of the
laser energy is absorbed to gamma rays, we also have χ > 0.1.



What is possible with today’s PW lasers?

Colliding intense laser and multi-GeV electrons

 χ = γ E / E
Sch

 Accelerate electrons to 
high energies before they 
encounter a high intensity 
field.

 Use gamma ray spectra to 
distinguish quantum from 
classical radiation 
reaction.
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What is possible with today’s PW lasers?

Colliding intense laser and multi-GeV electrons

 “Photon energy” in 
classical emission is 
unbounded, overestimates 
high-energy tail (a lot).

 Correcting the radiated 
intensity by g(χ), but 
without treating emission 
probabilistically, 
underpredicts that tail.



What is possible with today’s PW lasers?

Colliding intense laser and multi-GeV electrons

 Reproducibility of electron 
beam – given the initial 
energy and the photon 
spectra, determine a0 of 
target laser consistent 
with either classical and 
quantum emission.

 Only one of these will be 
consistent with the actual 
laser pulse.



 Next generation laser facilities will 
produce plasmas dominated by radiation 
reaction and QED processes.

 We can begin to study these interactions 
using QED-PIC simulations.

 But we can (and need to) to validate the 
model used in those simulations with 
colliding-beam experiments possible with 
the BELLA facility.
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